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Exercise 2.5.28

Solve Laplace’s equation inside a rectangle:

∇2u =
∂2u

∂x2
+
∂2u

∂y2
= 0

subject to the boundary conditions

u(0, y) = g(y) u(x, 0) = 0

u(L, y) = 0 u(x,H) = 0.

Solution

Because the Laplace equation is linear and homogeneous, the method of separation of variables
can be applied to solve it. Assume a product solution u(x, y) = X(x)Y (y) and plug it into the
PDE

∂2

∂x2
[X(x)Y (y)] +

∂2

∂y2
[X(x)Y (y)] = 0 → X ′′Y +XY ′′ = 0 → X ′′

X
+
Y ′′

Y
= 0

and the homogeneous boundary conditions.

u(L, y) = 0 → X(L)Y (y) = 0 → X(L) = 0

u(x, 0) = 0 → X(x)Y (0) = 0 → Y (0) = 0

u(x,H) = 0 → X(x)Y (H) = 0 → Y (H) = 0

Separate variables in the PDE.
X ′′

X
= −Y

′′

Y

The only way a function of x can be equal to a function of y is if both are equal to a constant λ.

X ′′

X
= −Y

′′

Y
= λ

As a result of separating variables, the PDE has reduced to two ODEs—one in each independent
variable.

X ′′

X
= λ

−Y
′′

Y
= λ


Values of λ for which nontrivial solutions to these ODEs and the associated boundary conditions
exist are called eigenvalues, and the solutions themselves are called eigenfunctions. Note that it
doesn’t matter what side the minus sign is on as long as all eigenvalues are considered. Solve the
ODE for Y .

Y ′′ = −λY

Check to see if there are positive eigenvalues: λ = µ2.

Y ′′ = −µ2Y

www.stemjock.com



Haberman Applied PDEs 5e: Section 2.5 - Exercise 2.5.28 Page 2 of 4

The general solution can be written in terms of sine and cosine.

Y (y) = C1 cosµy + C2 sinµy

Apply the two boundary conditions to determine C1 and C2.

Y (0) = C1 = 0

Y (H) = C1 cosµH + C2 sinµH = 0

Since C1 = 0, the second equation reduces to C2 sinµH = 0. To avoid the trivial solution, we
insist that C2 6= 0.

sinµH = 0

µH = nπ, n = 1, 2, . . .

µ =
nπ

H

There are positive eigenvalues λ =
(
nπ
H

)2
, and the eigenfunctions associated with them are

Y (y) = C2 sinµy → Yn(y) = sin
nπy

H
.

Note that n is taken over the positive integers only because n = 0 leads to the zero eigenvalue,
and negative integers lead to redundant values for λ. Using λ = n2π2

H2 , solve the ODE for X now.

X ′′ =
n2π2

H2
X

The general solution can be written in terms of hyperbolic sine and hyperbolic cosine.

X(x) = A cosh
nπx

H
+B sinh

nπx

H

Apply the boundary condition X(L) = 0 to determine one of the constants.

X(L) = A cosh
nπL

H
+B sinh

nπL

H
= 0 → A = −

sinh nπL
H

cosh nπL
H

B

As a result, the X-eigenfunction becomes

X(x) = −
sinh nπL

H

cosh nπL
H

B cosh
nπx

H
+B sinh

nπx

H

= − B

cosh nπL
H

(
sinh

nπL

H
cosh

nπx

H
− sinh

nπx

H
cosh

nπL

H

)
= − B

cosh nπL
H

sinh

(
nπL

H
− nπx

H

)
→ Xn(x) = sinh

nπ(L− x)
H

.

Check to see if zero is an eigenvalue: λ = 0.

Y ′′ = 0

The general solution is a straight line.

Y (y) = C3y + C4
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Apply the boundary conditions to determine C3 and C4.

Y (0) = C4 = 0

Y (H) = C3H + C4 = 0

Since C4 = 0, the second equation reduces to C3H = 0, which means C3 = 0.

Y (y) = 0

This is the trivial solution, so zero is not an eigenvalue. Check to see if there are negative
eigenvalues: λ = −γ2.

Y ′′ = γ2Y

The general solution can be written in terms of hyperbolic sine and hyperbolic cosine.

Y (y) = C5 cosh γy + C6 sinh γy

Apply the boundary conditions to determine C5 and C6.

Y (0) = C5 = 0

Y (H) = C5 cosh γH + C6 sinh γH = 0

Since C5 = 0, the second equation reduces to C6 sinh γH = 0. No nonzero value of γ can satisfy
this equation, so C6 = 0.

Y (y) = 0

This is the trivial solution, so there are no negative eigenvalues. According to the principle of
superposition, the general solution to the PDE is a linear combination of the eigenfunctions
u = Xn(x)Yn(y) over all the eigenvalues.

u(x, y) =

∞∑
n=1

Bn sinh
nπ(L− x)

H
sin

nπy

H

Apply the final boundary condition to determine the coefficients Bn.

u(0, y) =

∞∑
n=1

Bn sinh
nπL

H
sin

nπy

H
= g(y)

Multiply both sides by sin pπy
H , where p is an integer.

∞∑
n=1

Bn sinh
nπL

H
sin

nπy

H
sin

pπy

H
= g(y) sin

pπy

H

Integrate both sides with respect to y from 0 to H.

ˆ H

0

∞∑
n=1

Bn sinh
nπL

H
sin

nπy

H
sin

pπy

H
dy =

ˆ H

0
g(y) sin

pπy

H
dy

Split up the integral on the left and bring the constants in front.

∞∑
n=1

Bn sinh
nπL

H

ˆ H

0
sin

nπy

H
sin

pπy

H
dy =

ˆ H

0
g(y) sin

pπy

H
dy
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Because the sine functions are orthogonal, the integral on the left is zero if n 6= p. Only if n = p
does it yield a nonzero result.

Bn sinh
nπL

H

ˆ H

0
sin2

nπy

H
dy =

ˆ H

0
g(y) sin

nπy

H
dy

Evaluate the integral.

Bn sinh
nπL

H

(
H

2

)
=

ˆ H

0
g(y) sin

nπy

H
dy

Therefore,

Bn =
2

H sinh nπL
H

ˆ H

0
g(y) sin

nπy

H
dy.
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